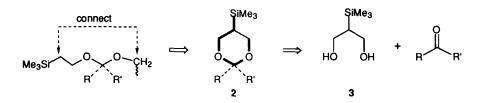


PII: S0040-4039(97)00239-6

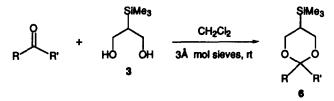

cyclo - SEM: A New Carbonyl Protecting Group

Bruce H. Lipshutz,* Paul Mollard, Craig Lindsley, and Virginia Chang Department of Chemistry University of California, Santa Barbara, CA 93106 [Phone: 805-893-2521; Fax: 805-893-8265; E Mail: lipshutz@sbmm1.ucsb.edu]

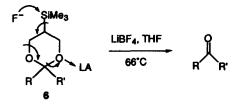
Summary. Conversion of aldehydes and ketones to 1,3-dioxanes with 2-trimethylsilyl-1,3-propanediol affords carbonyl-protected products, ultimately susceptible to unmasking with LiBF₄ in THF. © 1997 Elsevier Science Ltd. All rights reserved.

Protecting group chemistry¹ in organic synthesis remains a "fact of life", notwithstanding the recent push toward reactions that are classified as more environmentally friendly (*e.g.*, those run in H_2O). Most of the effort in this area focuses on either blocking of a hydroxyl moiety, or removal of the electrophilicity associated with an aldehyde or ketone carbonyl group. Several years ago we introduced SEM ethers 1, derived from SEM-Cl, which afford the luxury of a chemospecific TBAF removal under neutral conditions.² An equivalent protecting group for the carbonyl was envisioned

upon recognition of the SEM framework embedded within the 1,3-dioxane 2 (enboldened), which results from the hypothetical bond connection indicated below. We now describe the preparation of previously unknown 2-trimethylsilyl-1,3-propanediol (3) and its use as precursor to 'cyclo-SEM' protected aldehydes and ketones (2, where both R and R' \neq H).³



1873


Diol 3 was originally conceived to arise by several straightforward routes ... at least on paper. However, suffice it to say that to date, of the *many* pathways examined, only one of any practicality has surfaced for this specific diol. Starting with 1-bromovinyltrimethylsilane (4), itself realizable *via* an *Organic Synthesis* procedure,⁴ lithiation with 2t-BuLi⁵ followed by inverse addition *via* cold (-78°) cannulation into a paraformaldehyde/THF slurry at -78° affords the volatile allylic alcohol 5. Treatment of 5 with thexylborane⁶ (2.5 eq) and then basic peroxide gives 3 upon workup. After an initial flash chromatography, Kugelrohr distillation (bp 110-130° at 2 mm Hg) gives the diol as a white, low-melting solid (mp 36-38° C) which appears to be indefinitely stable to air on the benchtop at room temperature.

$$\begin{array}{c} SiMe_{3} \\ Br \\ \hline 4 \\ \end{array} \begin{array}{c} 1. \ 2.05 \ f \cdot BuLi, \ Et_{2}O, \ -78^{\circ}C \\ \hline 2. \ (CH_{2}O)_{n}, \ Et_{2}O, \ -78^{\circ} \ to \ rt \\ \hline \end{array} \begin{array}{c} SiMe_{3} \\ OH \\ \hline 5 \\ \hline \end{array} \begin{array}{c} 1. \ thexylborane, \ THF, \ 0^{\circ}C, \ rt, \ 8h \\ \hline 2. \ 2M \ NaOH, \ 30\% \ H_{2}O_{2} \\ \hline (79\%) \\ \hline \end{array} \begin{array}{c} OH \\ HO \\ \hline OH \\ \hline \end{array}$$

Carbonyl protection proceeds uneventfully at room temperature in dry CH_2Cl_2 (0.75-1.25M) using powdered and activated 3Å or 4Å molecular sieves and 1.5-2 eq of diol 3 in the presence of camphorsulfonic acid (0.25 eq). More sterically demanding cases may require 4-5 eq, but in all cases residual diol ($R_f = 0.29$ in 60% EtOAc/pet ether) can be recovered (*ca* 80%) by silica gel chromatographic separation from *cyclo*-SEM products 6. Forcing conditions, such as refluxing toluene in the presence of a Dean-Stark trap, consumes diol nonproductively and did not drive otherwise recalcitrant substrates to completion. Representative examples of *cyclo*-SEM acetals are shown in Table 1.

Key to the success of this new methodology is the selective removal of the *cyclo*-SEM residue, in particular under conditions where related (non-silylated) dioxanes and dioxolanes are unaffected, thereby highlighting the value of a fluoride-induced sequence. While BF₃·OEt₂ in THF readily unravels acetals 6, our goal was to find strictly neutral, non-oxidative or reductive conditions for carbonyl regen-

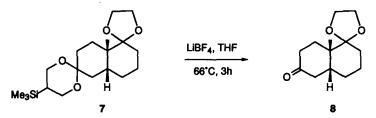

Entry	Substrate	Protection®			Deprotection	
		Equiv ^b	Time (h)	Yield (%) ^c	Time (h)	Yieid (%) ^c
1	+∕>••	2.0	1	97	18	78
2	O R R = Cl R = SPh	4.0 5.0	36 16	82 93	9.75 6.25	71 86
3		2.5	10	83	3	76
4		4.0	18	81	7.5	92
5	· the	5.6	19	65	10.5	79 ^d
6						
	R = <i>n</i> -Bu R = H	5.0 5.4	18 12	83 85	● f	● f
7		5.0	36	45	1.75	93
8	CN CN	5.0	20	89	8	84

Table 1. Carbonyl protections and deprotections as cyclo-SEM derivatives.

^eAll *cyclo*-SEM derivatives were fully characterized by spectral and MS data. ^bAmount of diol 3 used. ^cIsolated, chromatographically purified material. ^dThe α,β -unsaturated ketone was obtained. ^eNot attempted. ^fSee text.

eration. Ultimately, we found that LiBF₄ (1 eq), which contains both the 'push' (as a well-known source of fluoride ion⁷), and the 'pull' in the Lewis acidic (LA) lithium ion (or BF₃), in refluxing dry THF⁶ (0.5M) cleanly returns the desired aldehyde or ketone. Under these conditions, non-silyated derivatives remain essentially intact.⁹ Presumably, liberated BF₃ is tied up as the salt of by-product allyl alcohol.

The selectivity associated with cyclo-SEM deprotection could be further demonstrated by exposure of *bis* ketal 7 to our standard deprotection conditions. After three hours, keto ketal 8 was obtained in >80% yield (by glc); only 2-3% of the corresponding diketone was observed.

In summary, a structurally new carbonyl protecting group is reported which involves generation of 2-silylated 1,3-dioxanes, prepared from 2-trimethylsilyl-1,3-propanediol (3) and aldehydes or ketones. This cyclic acetal, a 'cyclo-SEM' derivative, is susceptible to chemospecific unmasking under the influence of fluoride ion supplied by LiBF₄. The ready availability of precursor diol 3, the good yields of protection and deprotection, and the mild and selective conditions¹⁰ involved at each stage argue well for use of the cyclo-SEM group in synthetic chemistry.

Acknowledgements. We warmly acknowledge financial support provided by the NSF (CHE 93-03883).

References and Notes

- Greene, T.W.; Wuts, P.G.M. in Protective Grougs in Organic Synthesis, Wiley, N.Y., 1991, 2nd Ed.; Kocienski, P.J. Protecting Groups, Thieme, Stuttgart, 1994.
- 2. Lipshutz, B.H.; Pegram, J.J. Tetrahedron Letters, 1980, 21, 3343.
- 3. For a related protecting group, see Lillie, B.M.; Avery, M.A. Tetrahedron Letters, 1994, 35, 969.
- 4. Boeckman, R.K.; Blum, D.M.; Ganem, B.; Halvey, N. Org. Syn. Coll. Vol. VI, 1988, 1033.
- (a) The corresponding Grignard can be formed,³⁰ although subsequent reaction with paraform-aldehyde leads to alcohol 5 in 35-71% yield; (b) Overman, L.; Renhowe, P.A. J. Org. Chem., 1994, 59, 4138.
- 6. Use of alternative hydroborating agents, such as 9-BBN, led to inferior results.
- 7. Other sources of fluoride ion that did *not* effect deprotection include TBAF (in THF or DMPU), CsF (in DMF, CH₃CN, or THF), and Bu₄NBF₄ (in THF or DMPU).
- Use of LiBF₄ in CH₃CN removes the cyclo-SEM group very easily, although in our hands, this reagent/solvent combination, in control experiments, also deprotects standard dioxane and dioxolane derivatives.
- Both a dioxolane and dioxane derivative of 4-t-butylcyclohexanone, upon treatment with LiBF₄ in refluxing THF, gave only small percentages of ketone, presumably from traces of adventitious water.
- For a recent alternative method for acetal unmasking under neutral conditions, see Johnstone, C.; Kerr, W.J.; Scott, J.S. J. Chem. Soc., Chem. Commun. 1996, 341.

(Received in USA 4 November 1996; accepted 23 January 1997)